Show simple item record

dc.contributor.authorYu, Yuanxi
dc.contributor.authorYang, Chenxing
dc.contributor.authorBaggioli, Matteo
dc.contributor.authorPhillips, Anthony E
dc.contributor.authorZaccone, Alessio
dc.contributor.authorZhang, Lei
dc.contributor.authorKajimoto, Ryoichi
dc.contributor.authorNakamura, Mitsutaka
dc.contributor.authorYu, Dehong
dc.contributor.authorHong, Liang
dc.date.accessioned2022-06-29T19:46:32Z
dc.date.available2022-06-29T19:46:32Z
dc.date.issued2022-06-25
dc.date.submitted2021-09-22
dc.identifier.issn2041-1723
dc.identifier.others41467-022-31349-6
dc.identifier.other31349
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/338520
dc.description.abstractThe vibrational properties of crystalline bulk materials are well described by Debye theory, which successfully predicts the quadratic ω2 low-frequency scaling of the vibrational density of states. However, the analogous framework for nanoconfined materials with fewer degrees of freedom has been far less well explored. Using inelastic neutron scattering, we characterize the vibrational density of states of amorphous ice confined inside graphene oxide membranes and we observe a crossover from the Debye ω2 scaling to an anomalous ω3 behaviour upon reducing the confinement size L. Additionally, using molecular dynamics simulations, we confirm the experimental findings and prove that such a scaling appears in both crystalline and amorphous solids under slab-confinement. We theoretically demonstrate that this low-frequency ω3 law results from the geometric constraints on the momentum phase space induced by confinement along one spatial direction. Finally, we predict that the Debye scaling reappears at a characteristic frequency ω× = vL/2π, with v the speed of sound of the material, and we confirm this quantitative estimate with simulations.
dc.languageen
dc.publisherSpringer Science and Business Media LLC
dc.subjectArticle
dc.subject/639/766/119/1002
dc.subject/639/301/357
dc.subjectarticle
dc.titleThe ω3 scaling of the vibrational density of states in quasi-2D nanoconfined solids.
dc.typeArticle
dc.date.updated2022-06-29T19:46:32Z
prism.issueIdentifier1
prism.publicationNameNat Commun
prism.volume13
dc.identifier.doi10.17863/CAM.85933
dcterms.dateAccepted2022-06-14
rioxxterms.versionofrecord10.1038/s41467-022-31349-6
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.contributor.orcidYu, Yuanxi [0000-0001-8682-5529]
dc.contributor.orcidBaggioli, Matteo [0000-0001-9392-7507]
dc.contributor.orcidPhillips, Anthony E [0000-0003-4225-0158]
dc.contributor.orcidKajimoto, Ryoichi [0000-0003-4845-5947]
dc.contributor.orcidYu, Dehong [0000-0003-2995-0336]
dc.contributor.orcidHong, Liang [0000-0003-0107-336X]
dc.identifier.eissn2041-1723
cam.issuedOnline2022-06-25


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record