Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft.

Authors
Petković, Matej 
Lucas, Luke 
Levatić, Jurica 
Stepišnik, Tomaž 

Loading...
Thumbnail Image
Type
Article
Change log
Abstract

We present six datasets containing telemetry data of the Mars Express Spacecraft (MEX), a spacecraft orbiting Mars operated by the European Space Agency. The data consisting of context data and thermal power consumption measurements, capture the status of the spacecraft over three Martian years, sampled at six different time resolutions that range from 1 min to 60 min. From a data analysis point-of-view, these data are challenging even for the more sophisticated state-of-the-art artificial intelligence methods. In particular, given the heterogeneity, complexity, and magnitude of the data, they can be employed in a variety of scenarios and analyzed through the prism of different machine learning tasks, such as multi-target regression, learning from data streams, anomaly detection, clustering, etc. Analyzing MEX's telemetry data is critical for aiding very important decisions regarding the spacecraft's status and operation, extracting novel knowledge, and monitoring the spacecraft's health, but the data can also be used to benchmark artificial intelligence methods designed for a variety of tasks.

Publication Date
2022-05-24
Online Publication Date
2022-05-24
Acceptance Date
2022-04-12
Keywords
46 Information and Computing Sciences, 51 Physical Sciences, 4611 Machine Learning
Journal Title
Sci Data
Journal ISSN
2052-4463
2052-4463
Volume Title
9
Publisher
Springer Science and Business Media LLC