Inelastic scattering of electrons in water from first principles: cross sections and inelastic mean free path for use in Monte Carlo track-structure simulations of biological damage.
View / Open Files
Authors
Publication Date
2022-05Journal Title
R Soc Open Sci
ISSN
2054-5703
Publisher
The Royal Society
Volume
9
Issue
5
Language
eng
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Koval, N. E., Koval, P., Da Pieve, F., Kohanoff, J., Artacho, E., & Emfietzoglou, D. (2022). Inelastic scattering of electrons in water from first principles: cross sections and inelastic mean free path for use in Monte Carlo track-structure simulations of biological damage.. R Soc Open Sci, 9 (5) https://doi.org/10.1098/rsos.212011
Abstract
Modelling the inelastic scattering of electrons in water is fundamental, given their crucial role in biological damage. In Monte Carlo track-structure (MC-TS) codes used to assess biological damage, the energy loss function (ELF), from which cross sections are extracted, is derived from different semi-empirical optical models. Only recently have first ab initio results for the ELF and cross sections in water become available. For benchmarking purpose, in this work, we present ab initio linear-response time-dependent density functional theory calculations of the ELF of liquid water. We calculated the inelastic scattering cross sections, inelastic mean free paths, and electronic stopping power and compared our results with recent calculations and experimental data showing a good agreement. In addition, we provide an in-depth analysis of the contributions of different molecular orbitals, species and orbital angular momenta to the total ELF. Moreover, we present single-differential cross sections computed for each molecular orbital channel, which should prove useful for MC-TS simulations.
Keywords
Water, Radiation damage, Linear Response, Time-dependent Density Functional Theory, Inelastic Electron Scattering, Track-structure Simulations
Identifiers
35619995, PMC9115040
External DOI: https://doi.org/10.1098/rsos.212011
This record's URL: https://www.repository.cam.ac.uk/handle/1810/338559
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk