Show simple item record

dc.contributor.authorOkedi, Tonny
dc.contributor.authorYunus, Kamran
dc.contributor.authorFisher, Adrian
dc.date.accessioned2022-06-29T19:50:41Z
dc.date.available2022-06-29T19:50:41Z
dc.date.issued2022-06-29
dc.date.submitted2021-08-18
dc.identifier.issn2045-2322
dc.identifier.others41598-022-15111-y
dc.identifier.other15111
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/338611
dc.descriptionFunder: Cambridge Trust; doi: http://dx.doi.org/10.13039/501100003343
dc.descriptionFunder: Cambridge CARES C4T
dc.description.abstractElectrons from cyanobacteria photosynthetic and respiratory systems are implicated in current generated in biophotovoltaic (BPV) devices. However, the pathway that electrons follow to electrodes remains largely unknown, limiting progress of applied research. Here we use Hilbert-Huang Transforms to decompose Synechococcus elongatus sp. PCC7942 BPV current density profiles into physically meaningful oscillatory components, and compute their instantaneous frequencies. We develop hypotheses for the genesis of the oscillations via repeat experiments with iron-depleted and 20% CO[Formula: see text] enriched biofilms. The oscillations exhibit rhythms that are consistent with the state of the art cyanobacteria circadian model, and putative exoelectrogenic pathways. In particular, we observe oscillations consistent with: rhythmic D1:1 (photosystem II core) expression; circadian-controlled glycogen accumulation; circadian phase shifts under modified intracellular %ATP; and circadian period shortening in the absence of the iron-sulphur protein LdpA. We suggest that the extracted oscillations may be used to reverse-identify proteins and/or metabolites responsible for cyanobacteria exoelectrogenesis.
dc.languageen
dc.publisherSpringer Science and Business Media LLC
dc.subjectArticle
dc.subject/631/80/105
dc.subject/631/449/1734
dc.subject/639/4077/893
dc.subject/639/4077
dc.subjectarticle
dc.titleDecomposing biophotovoltaic current density profiles using the Hilbert-Huang transform reveals influences of circadian clock on cyanobacteria exoelectrogenesis.
dc.typeArticle
dc.date.updated2022-06-29T19:50:40Z
prism.issueIdentifier1
prism.publicationNameSci Rep
prism.volume12
dc.identifier.doi10.17863/CAM.86024
dcterms.dateAccepted2022-04-14
rioxxterms.versionofrecord10.1038/s41598-022-15111-y
rioxxterms.versionVoR
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
dc.identifier.eissn2045-2322
pubs.funder-project-idNewton Fund (RG95201)
cam.issuedOnline2022-06-29


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record