Repository logo
 

Optical suppression of energy barriers in single molecule-metal binding.

Published version
Peer-reviewed

Type

Article

Change log

Abstract

Transient bonds between molecules and metal surfaces underpin catalysis, bio/molecular sensing, molecular electronics, and electrochemistry. Techniques aiming to characterize these bonds often yield conflicting conclusions, while single-molecule probes are scarce. A promising prospect confines light inside metal nanogaps to elicit in operando vibrational signatures through surface-enhanced Raman scattering. Here, we show through analysis of more than a million spectra that light irradiation of only a few microwatts on molecules at gold facets is sufficient to overcome the metallic bonds between individual gold atoms and pull them out to form coordination complexes. Depending on the molecule, these light-extracted adatoms persist for minutes under ambient conditions. Tracking their power-dependent formation and decay suggests that tightly trapped light transiently reduces energy barriers at the metal surface. This opens intriguing prospects for photocatalysis and controllable low-energy quantum devices such as single-atom optical switches.

Description

Keywords

Journal Title

Sci Adv

Conference Name

Journal ISSN

2375-2548
2375-2548

Volume Title

Publisher

American Association for the Advancement of Science (AAAS)
Sponsorship
Isaac Newton Trust (18.08(K))
Leverhulme Trust (ECF-2018-021)
Engineering and Physical Sciences Research Council (EP/L027151/1)
Engineering and Physical Sciences Research Council (EP/L015978/1)
European Commission Horizon 2020 (H2020) ERC (883703)
European Commission Horizon 2020 (H2020) Research Infrastructures (RI) (861950)
Leverhulme Trust, Isaac Newton Trust,
Relationships
Is supplemented by: