Sensitivity analysis for calibrated inverse probability-of-censoring weighted estimators under non-ignorable dropout.
Publication Date
2022-07Journal Title
Stat Methods Med Res
ISSN
0962-2802
Publisher
SAGE Publications
Volume
31
Issue
7
Pages
1374-1391
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Su, L., Seaman, S. R., & Yiu, S. (2022). Sensitivity analysis for calibrated inverse probability-of-censoring weighted estimators under non-ignorable dropout.. Stat Methods Med Res, 31 (7), 1374-1391. https://doi.org/10.1177/09622802221090763
Abstract
Inverse probability of censoring weighting is a popular approach to handling dropout in longitudinal studies. However, inverse probability-of-censoring weighted estimators (IPCWEs) can be inefficient and unstable if the weights are estimated by maximum likelihood. To alleviate these problems, calibrated IPCWEs have been proposed, which use calibrated weights that directly optimize covariate balance in finite samples rather than the weights from maximum likelihood. However, the existing calibrated IPCWEs are all based on the unverifiable assumption of sequential ignorability and sensitivity analysis strategies under non-ignorable dropout are lacking. In this paper, we fill this gap by developing an approach to sensitivity analysis for calibrated IPCWEs under non-ignorable dropout. A simple technique is proposed to speed up the computation of bootstrap and jackknife confidence intervals and thus facilitate sensitivity analyses. We evaluate the finite-sample performance of the proposed methods using simulations and apply our methods to data from an international inception cohort study of systemic lupus erythematosus. An R Markdown tutorial to demonstrate the implementation of the proposed methods is provided.
Keywords
Covariate balancing, informative dropout, inverse probability weighting, longitudinal data, missing not at random, Cohort Studies, Computer Simulation, Humans, Longitudinal Studies, Probability
Sponsorship
MRC (unknown)
MRC (unknown)
Identifiers
10.1177_09622802221090763
External DOI: https://doi.org/10.1177/09622802221090763
This record's URL: https://www.repository.cam.ac.uk/handle/1810/338709
Rights
Licence:
https://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk