Show simple item record

dc.contributor.authorZajdel, Paweł
dc.contributor.authorMadden, David G
dc.contributor.authorBabu, Robin
dc.contributor.authorTortora, Marco
dc.contributor.authorMirani, Diego
dc.contributor.authorTsyrin, Nikolay Nikolaevich
dc.contributor.authorBartolomé, Luis
dc.contributor.authorAmayuelas, Eder
dc.contributor.authorFairen-Jimenez, David
dc.contributor.authorLowe, Alexander Rowland
dc.contributor.authorChorążewski, Mirosław
dc.contributor.authorLeao, Juscelino B
dc.contributor.authorBrown, Craig M
dc.contributor.authorBleuel, Markus
dc.contributor.authorStoudenets, Victor
dc.contributor.authorCasciola, Carlo Massimo
dc.contributor.authorEcheverría, María
dc.contributor.authorBonilla, Francisco
dc.contributor.authorGrancini, Giulia
dc.contributor.authorMeloni, Simone
dc.contributor.authorGrosu, Yaroslav
dc.descriptionFunder: Engineering and Physical Sciences Research Council
dc.description.abstractControlling the pressure at which liquids intrude (wet) and extrude (dry) a nanopore is of paramount importance for a broad range of applications, such as energy conversion, catalysis, chromatography, separation, ionic channels, and many more. To tune these characteristics, one typically acts on the chemical nature of the system or pore size. In this work, we propose an alternative route for controlling both intrusion and extrusion pressures via proper arrangement of the grains of the nanoporous material. To prove the concept, dynamic intrusion-extrusion cycles for powdered and monolithic ZIF-8 metal-organic framework were conducted by means of water porosimetry and in operando neutron scattering. We report a drastic increase in intrusion-extrusion dynamic hysteresis when going from a fine powder to a dense monolith configuration, transforming an intermediate performance of the ZIF-8 + water system (poor molecular spring) into a desirable shock-absorber with more than 1 order of magnitude enhancement of dissipated energy per cycle. The obtained results are supported by MD simulations and pave the way for an alternative methodology of tuning intrusion-extrusion pressure using a macroscopic arrangement of nanoporous material.
dc.publisherAmerican Chemical Society (ACS)
dc.rightsAttribution 4.0 International
dc.sourcenlmid: 101504991
dc.sourceessn: 1944-8252
dc.subjectNanoporous Materials
dc.subjectMetal−organic Framework
dc.subjectMechanical Energy Conversion
dc.titleTurning Molecular Springs into Nano-Shock Absorbers: The Effect of Macroscopic Morphology and Crystal Size on the Dynamic Hysteresis of Water Intrusion-Extrusion into-from Hydrophobic Nanopores.
prism.publicationNameACS Appl Mater Interfaces
dc.contributor.orcidZajdel, Paweł [0000-0003-1220-5866]
dc.contributor.orcidMadden, David G [0000-0003-3875-9146]
dc.contributor.orcidTortora, Marco [0000-0002-3197-2780]
dc.contributor.orcidBartolomé, Luis [0000-0001-9649-1470]
dc.contributor.orcidFairen-Jimenez, David [0000-0002-5013-1194]
dc.contributor.orcidLowe, Alexander Rowland [0000-0002-9700-5873]
dc.contributor.orcidChorążewski, Mirosław [0000-0002-8912-9024]
dc.contributor.orcidLeao, Juscelino B [0000-0003-4015-535X]
dc.contributor.orcidBrown, Craig M [0000-0002-9637-9355]
dc.contributor.orcidGrancini, Giulia [0000-0001-8704-4222]
dc.contributor.orcidMeloni, Simone [0000-0002-3925-3799]
dc.contributor.orcidGrosu, Yaroslav [0000-0001-6523-1780]
pubs.funder-project-idInnovate UK (104384)
pubs.funder-project-idEuropean Research Council (726380)

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International