Towards automatic interpretation of A Fortiori arguments
View / Open Files
Authors
Razuvayevskaya, Olesya
Advisors
Teufel, Simone
Date
2022-01-01Awarding Institution
University of Cambridge
Qualification
Doctor of Philosophy (PhD)
Type
Thesis
Metadata
Show full item recordCitation
Razuvayevskaya, O. (2022). Towards automatic interpretation of A Fortiori arguments (Doctoral thesis). https://doi.org/10.17863/CAM.86256
Abstract
Argument A Fortiori represents a common type of everyday reasoning where the conclusions about the possibility of a certain scenario are drawn based on its comparison to some similar scenario, as in the following mini-argument:
“Implementing this law? It has not even been passed yet.”
To infer the main claim of this argument, namely that the law is not implemented yet, the human brain is able to perform a likelihood comparison, which involves comparing the probability of passing a law with the likelihood of passing a law and then implementing it. Being able to understand the underlying reasons behind A Fortiori arguments is an important step towards general argument interpretation and knowledge acquisition.
In this thesis, I present a model of the theoretical aspects behind the A Fortiori reasoning pattern that extends Sion’s (2013) model. My model explains A Fortiori via an underlying relation type, an implicit property, and the correlation between these. The model also delineates the true cases of A Fortiori against zeugmas and plain wrong A Fortiori usage. In order to validate my model, I conducted a human annotation study, using a dataset of real-world “let alone” sentences across several domains and registers. The
pairwise agreement ranged from K = .42 to K = .70 for the task of relation classification and from ko = .34 to ko = .71 for the task of the hidden property specification, whereas for the task of identifying the two compared scenarios, the agreement rose to F1=.83 and F1=.89 (entity-level, strict).
I then present an automation for the three main steps of my model, using a combination of deep learning approaches with multi-task learning and transformer architectures for masked language modelling. The steps of my pipeline represent the following tasks: sequence labelling for argument component identification (where the best model achieves F1macro =.84±.012), classification for the comparison reason (where the best model achieves F1macro =.64±.005), and prediction of the hidden comparison property. The last task is automated in two ways, as a ranking task (where the best model achieves MAP=.34±.009) and as a masked word prediction task (where the best model achieves an accuracy of 66%). My results show that it is in principle possible to automate the major steps of the task of understanding A Fortiori logic. They also show that having access to the output of previous steps in the pipeline improves the performance on subsequent ones.
Keywords
argumentation, natural language processing, language models, argument mining, argument a fortiori
Sponsorship
The Ministry Of Education Of Republic Of Azerbaijan
Embargo Lift Date
2023-07-06
Identifiers
This record's DOI: https://doi.org/10.17863/CAM.86256
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk