Show simple item record

dc.contributor.authorMachado, Simon
dc.date.accessioned2022-07-12T13:39:06Z
dc.date.available2022-07-12T13:39:06Z
dc.date.submitted2022-04-11
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/339030
dc.description.abstractWe study generalisations of a theorem of Yves Meyer concerning the structure of approximate lattices. An approximate lattice is a discrete approximate subgroup of a locally compact group - i.e. a subset that is closed under multiplication up to an error controlled by a finite set - that has finite co-volume. We study, successively, generalisations of Meyer's theorem in soluble Lie groups, in amenable locally compact groups and in higher-rank semi-simple algebraic groups. Along the way, we investigate properties of closed and discrete approximate subgroups of locally compact groups in general.
dc.rightsAll Rights Reserved
dc.rights.urihttps://www.rioxx.net/licenses/all-rights-reserved/
dc.subjectMathematics
dc.titleDiscrete approximate subgroups of Lie groups
dc.typeThesis
dc.type.qualificationlevelDoctoral
dc.publisher.institutionUniversity of Cambridge
dc.date.updated2022-07-07T14:21:33Z
dc.identifier.doi10.17863/CAM.86438
rioxxterms.licenseref.urihttps://www.rioxx.net/licenses/all-rights-reserved/
dc.contributor.orcidMachado, Simon [0000-0002-1787-6864]
rioxxterms.typeThesis
pubs.funder-project-idEPSRC (2117723)
cam.supervisorBreuillard, Emmanuel
cam.depositDate2022-07-07
pubs.licence-identifierapollo-deposit-licence-2-1
pubs.licence-display-nameApollo Repository Deposit Licence Agreement


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record