Repository logo
 

Supporting Data for Operando monitoring of single-particle kinetic state-of-charge heterogeneities and cracking in high-rate Li-ion anodes


No Thumbnail Available

Type

Dataset

Change log

Authors

Merryweather, Alice  ORCID logo  https://orcid.org/0000-0002-9386-1760
Jacquet, Quentin 
Emge, Steffen 
Schnedermann, Christoph 
Rao, Akshay 

Description

This data set contains all the data presented in the main text figures (for the manuscript titled 'Operando monitoring of single-particle kinetic state-of-charge heterogeneities and cracking in high-rate Li-ion anodes'). The information on how the data was acquired and processed is detailed in the open access manuscript + SI. This data set also contains the MATLAB code used to conduct the phase field modelling in the same manuscript. Figure 1: (Panel b) Galvanostatic cycling data of NWO (voltage vs specific capacity) for five cycles cycles at 1C, 5C and 20C. (Panel c) Li-ion self-diffusion coefficient in NWO, as a function of temperature and Li-concentration. Figure 2: (Panel a) SEM image of NWO particles. (Panel c) Unprocessed optical images of a NWO particle during a galvanostatic cycle at 5C. (Panel d) Cell voltage, single particle scattering intensity, and single particle length change, during galvanostatic cycles at 1C, 5C and 20C. (Panel e) Change in the c-lattice parameter of NWO, measured by operando and ex situ XRD, as a function of Li-content. Optically-determined length change for multiple individual NWO particles. Figure 3: (Panel a&d) Cell voltage and applied current for two galvanostatic cycles at 5C, initially preceded by a 2.8V hold. (Panel b) Differential optical images showing a particle of NWO at the beginning of the first 5C cycle shown in a. (Panel c) Cell voltage for the first 50s of the first 5C cycle. Differential linecut along a NWO particle during this same time period. (Panel e) Differential optical images showing a particle of NWO at the beginning of the second 5C cycle shown in d. (Panel f) Cell voltage for the first 50s of the second 5C cycle. Differential linecut along a NWO particle during this same time period. (Panel g) Simulated change in Li-content along a NWO particle, during the first 30 s of lithiation from a starting composition of x=0.08. (Panel h) Simulated change in Li-content along a NWO particle, during the first 30 s of lithiation from a starting composition of x=0.14. (Panel i) Experimentally-determined and simulated lithiation front velocities at 1C, 5C and 20C. Figure 4: (Panels a,d,I,j) Unprocessed optical images of a NWO particle at various stages between cycles. (Panels b,c,g) Cell voltage during delithiation at C/2, 5C or 20C. Differential linecut along the NWO particle during the same time periods. (Panels e,f,h) Differential optical images showing the particle of NWO at the time-points indicated in panels c and g. Figure 5: (Panels a,b,c) Statistical data obtained from optical images of a consistent set of particles, between ‘cracking cycles’. See explanatory document. (Panel d) Unprocessed optical images of NWO particles after 20 cycles.

Version

Software / Usage instructions

The code for the phase field modelling uses MATLAB software (https://uk.mathworks.com/products/matlab.html).

Keywords

Battery, ion transport, niobium tungsten oxide, NWO, operando, optical microscopy, single particle

Publisher

Sponsorship
EPSRC (2123946)
Relationships
Supplements: