Show simple item record

dc.contributor.authorJones, DO
dc.contributor.authorMandel, KS
dc.contributor.authorKirshner, RP
dc.contributor.authorThorp, S
dc.contributor.authorChallis, PM
dc.contributor.authorAvelino, A
dc.contributor.authorBrout, D
dc.contributor.authorBurns, C
dc.contributor.authorFoley, RJ
dc.contributor.authorPan, YC
dc.contributor.authorScolnic, DM
dc.contributor.authorSiebert, MR
dc.contributor.authorChornock, R
dc.contributor.authorFreedman, WL
dc.contributor.authorFriedman, A
dc.contributor.authorFrieman, J
dc.contributor.authorGalbany, L
dc.contributor.authorHsiao, E
dc.contributor.authorKelsey, L
dc.contributor.authorMarion, GH
dc.contributor.authorNichol, RC
dc.contributor.authorNugent, PE
dc.contributor.authorPhillips, MM
dc.contributor.authorRest, A
dc.contributor.authorRiess, AG
dc.contributor.authorSako, M
dc.contributor.authorSmith, M
dc.contributor.authorWiseman, P
dc.contributor.authorWood-Vasey, WM
dc.date.accessioned2022-08-01T23:30:23Z
dc.date.available2022-08-01T23:30:23Z
dc.date.issued2022
dc.identifier.issn0004-637X
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/339715
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>Type Ia supernovae (SNe Ia) are more precise standardizable candles when measured in the near-infrared (NIR) than in the optical. With this motivation, from 2012 to 2017 we embarked on the RAISIN program with the Hubble Space Telescope (HST) to obtain rest-frame NIR light curves for a cosmologically distant sample of 37 SNe Ia (0.2 ≲ <jats:italic>z</jats:italic> ≲ 0.6) discovered by Pan-STARRS and the Dark Energy Survey. By comparing higher-<jats:italic>z</jats:italic> HST data with 42 SNe Ia at <jats:italic>z</jats:italic> &lt; 0.1 observed in the NIR by the Carnegie Supernova Project, we construct a Hubble diagram from NIR observations (with only time of maximum light and some selection cuts from optical photometry) to pursue a unique avenue to constrain the dark energy equation-of-state parameter, <jats:italic>w</jats:italic>. We analyze the dependence of the full set of Hubble residuals on the SN Ia host galaxy mass and find Hubble residual steps of size ∼0.06-0.1 mag with 1.5<jats:italic>σ</jats:italic>−2.5<jats:italic>σ</jats:italic> significance depending on the method and step location used. Combining our NIR sample with cosmic microwave background constraints, we find 1 + <jats:italic>w</jats:italic> = −0.17 ± 0.12 (statistical + systematic errors). The largest systematic errors are the redshift-dependent SN selection biases and the properties of the NIR mass step. We also use these data to measure <jats:italic>H</jats:italic> <jats:sub>0</jats:sub> = 75.9 ± 2.2 km s<jats:sup>−1</jats:sup> Mpc<jats:sup>−1</jats:sup> from stars with geometric distance calibration in the hosts of eight SNe Ia observed in the NIR versus <jats:italic>H</jats:italic> <jats:sub>0</jats:sub> = 71.2 ± 3.8 km s<jats:sup>−1</jats:sup> Mpc<jats:sup>−1</jats:sup> using an inverse distance ladder approach tied to Planck. Using optical data, we find 1 + <jats:italic>w</jats:italic> = −0.10 ± 0.09, and with optical and NIR data combined, we find 1 + <jats:italic>w</jats:italic> = −0.06 ± 0.07; these shifts of up to ∼0.11 in <jats:italic>w</jats:italic> could point to inconsistency in the optical versus NIR SN models. There will be many opportunities to improve this NIR measurement and better understand systematic uncertainties through larger low-<jats:italic>z</jats:italic> samples, new light-curve models, calibration improvements, and eventually by building high-<jats:italic>z</jats:italic> samples from the Roman Space Telescope.</jats:p>
dc.publisherAmerican Astronomical Society
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleCosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State
dc.typeArticle
dc.publisher.departmentDepartment of Pure Mathematics And Mathematical Statistics
dc.date.updated2022-06-06T18:43:27Z
prism.publicationNameAstrophysical Journal
dc.identifier.doi10.17863/CAM.87134
dcterms.dateAccepted2022-05-31
rioxxterms.versionofrecord10.3847/1538-4357/ac755b
rioxxterms.versionVoR
dc.contributor.orcidJones, DO [0000-0002-6230-0151]
dc.contributor.orcidMandel, KS [0000-0001-9846-4417]
dc.contributor.orcidKirshner, RP [0000-0002-1966-3942]
dc.contributor.orcidAvelino, A [0000-0002-2938-7822]
dc.contributor.orcidBrout, D [0000-0001-5201-8374]
dc.contributor.orcidBurns, C [0000-0003-4625-6629]
dc.contributor.orcidFoley, RJ [0000-0002-2445-5275]
dc.contributor.orcidPan, YC [0000-0001-8415-6720]
dc.contributor.orcidSiebert, MR [0000-0003-2445-3891]
dc.contributor.orcidChornock, R [0000-0002-7706-5668]
dc.contributor.orcidFreedman, WL [0000-0003-3431-9135]
dc.contributor.orcidFriedman, A [0000-0003-1334-039X]
dc.contributor.orcidGalbany, L [0000-0002-1296-6887]
dc.contributor.orcidHsiao, E [0000-0003-1039-2928]
dc.contributor.orcidMarion, GH [0000-0002-2966-3508]
dc.contributor.orcidNugent, PE [0000-0002-3389-0586]
dc.contributor.orcidPhillips, MM [0000-0003-2734-0796]
dc.contributor.orcidRest, A [0000-0002-4410-5387]
dc.contributor.orcidRiess, AG [0000-0002-6124-1196]
dc.contributor.orcidSako, M [0000-0003-2764-7093]
dc.contributor.orcidSmith, M [0000-0002-3321-1432]
dc.contributor.orcidWood-Vasey, WM [0000-0001-7113-1233]
dc.identifier.eissn1538-4357
rioxxterms.typeJournal Article/Review
pubs.funder-project-idSTFC (2118607)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) ERC (101002652)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (873089)
cam.issuedOnline2022-07-13
cam.depositDate2022-06-06
pubs.licence-identifierapollo-deposit-licence-2-1
pubs.licence-display-nameApollo Repository Deposit Licence Agreement


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International