Show simple item record

dc.contributor.authorJackson, DM
dc.contributor.authorHaeusler, U
dc.contributor.authorZaporski, L
dc.contributor.authorBodey, JH
dc.contributor.authorShofer, N
dc.contributor.authorClarke, E
dc.contributor.authorHugues, M
dc.contributor.authorAtatüre, M
dc.contributor.authorLe Gall, C
dc.contributor.authorGangloff, DA
dc.date.accessioned2022-08-16T23:30:12Z
dc.date.available2022-08-16T23:30:12Z
dc.date.issued2022
dc.identifier.issn2160-3308
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/340169
dc.description.abstractPurifying a high-temperature ensemble of quantum particles towards a known state is a key requirement to exploit quantum many-body effects. An alternative to passive cooling, which brings a system to its ground state, is based on feedback to stabilise the system actively around a target state. This alternative, if realised, offers additional control capabilities for the design of quantum states. Here we present a quantum feedback algorithm capable of stabilising the collective state of an ensemble from an infinite-temperature state to the limit of single quanta. We implement this on ~50,000 nuclei in a semiconductor quantum dot, and show that the nuclear-spin fluctuations are reduced 83-fold down to 10 spin macrostates. While our algorithm can purify a single macrostate, system-specific inhomogeneities prevent reaching this limit. Our feedback algorithm further engineers classically correlated ensemble states via macrostate tuning, weighted bimodality, and latticed multistability, constituting a pre-cursor towards quantum-correlated macrostates.
dc.publisherAmerican Physical Society (APS)
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectquant-ph
dc.subjectquant-ph
dc.subjectcond-mat.mes-hall
dc.titleOptimal Purification of a Spin Ensemble by Quantum-Algorithmic Feedback
dc.typeArticle
dc.publisher.departmentDepartment of Physics
dc.publisher.departmentSt John's College
dc.date.updated2022-06-17T11:29:39Z
prism.publicationNamePhysical Review X
dc.identifier.doi10.17863/CAM.87594
dcterms.dateAccepted2022-06-10
rioxxterms.versionofrecord10.1103/PhysRevX.12.031014
rioxxterms.versionVoR
dc.contributor.orcidJackson, DM [0000-0003-2001-6619]
dc.contributor.orcidHaeusler, U [0000-0002-6818-0576]
dc.contributor.orcidClarke, E [0000-0002-8287-0282]
dc.contributor.orcidAtatüre, M [0000-0003-3852-0944]
dc.contributor.orcidGangloff, DA [0000-0002-7100-0847]
dc.identifier.eissn2160-3308
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEuropean Research Council (617985)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/M013243/1)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (861097)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (862035)
cam.issuedOnline2022-07-21
cam.depositDate2022-06-17
pubs.licence-identifierapollo-deposit-licence-2-1
pubs.licence-display-nameApollo Repository Deposit Licence Agreement


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's licence is described as Attribution 4.0 International