Distinguishing black-hole spin-orbit resonances by their gravitational wave signatures. II. Full parameter estimation

Change log
Trifirò, D 
O'Shaughnessy, R 
Gerosa, D 
Berti, E 
Kesden, M 

Gravitational waves from coalescing binary black holes encode the evolution of their spins prior to merger. In the post-Newtonian regime and on the precession time scale, this evolution has one of three morphologies, with the spins either librating around one of two fixed points ("resonances") or circulating freely. In this paper we perform full parameter estimation on resonant binaries with fixed masses and spin magnitudes, changing three parameters: a conserved "projected effective spin" ξ and resonant family ΔΦ=0,π (which uniquely label the source); the inclination θJN of the binary's total angular momentum with respect to the line of sight (which determines the strength of precessional effects in the waveform); and the signal amplitude. We demonstrate that resonances can be distinguished for a wide range of binaries, except for highly symmetric configurations where precessional effects are suppressed. Motivated by new insight into double-spin evolution, we introduce new variables to characterize precessing black hole binaries which naturally reflects the time scale separation of the system and therefore better encode the dynamical information carried by gravitational waves.

gr-qc, gr-qc, astro-ph.HE
Journal Title
Physical Review D
Conference Name
Journal ISSN
Volume Title
Science and Technology Facilities Council (ST/H008586/1)
Science and Technology Facilities Council (ST/J005673/1)
Science and Technology Facilities Council (ST/K00333X/1)
Science and Technology Facilities Council (ST/L000636/1)
Science and Technology Facilities Council (ST/M00418X/1)
Science and Technology Facilities Council (ST/M007065/1)
European Research Council (646597)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (690904)
D.T. is partially supported by the National Science Foundation through awards PHY-1067985, PHY-1404139, PHY-1055103 and PHY-1307020. D.T. is grateful for the support and hospitality of V. Kalogera's group and the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) at Northwestern University, where this project was conceived. D.G. is supported by the UK STFC and the Isaac Newton Studentship of the University of Cambridge. E.B. is supported by NSF CAREER Grant PHY-1055103 and by FCT contract IF/00797/2014/CP1214/CT0012 under the IF2014 Programme. M.K. is supported by Alfred P. Sloan Foundation grant FG-2015-65299. T.B.L. acknowledges NSF award PHY-1307020. U.S. is supported by FP7-PEOPLE-2011-CIG Grant No. 293412, FP7-PEOPLE-2011-IRSES Grant No.295189, H2020-MSCA-RISE-2015 Grant No. StronGrHEP-690904, H2020 ERC Consolidator Grant Agreement No. MaGRaTh-646597, SDSC and TACC through XSEDE Grant No. PHY-090003 by the NSF, Finis Terrae through Grant No. ICTS-CESGA-249, STFC Roller Grant No. ST/L000636/1 and DiRAC's Cosmos Shared Memory system through BIS Grant No. ST/J005673/1 and STFC Grant Nos. ST/H008586/1, ST/K00333X/1. Computational resources were provided by the Northwestern University Grail cluster (CIERA) through NSF MRI award PHY-1126812, by the Atlas cluster at AEI Hannover, supported by the Max Planck Institute and by the Nemo 20 at cluster through NSF-092340.