Imaging Light-Induced Migration of Dislocations in Halide Perovskites with 3d Nanoscale Strain Mapping.
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
In recent years, halide perovskite materials have been used to make high performance solar cell and light-emitting devices. However, material defects still limit device performance and stability. Here, we use synchrotron-based Bragg Coherent Diffraction Imaging to visualise nanoscale strain fields, such as those local to defects, in halide perovskite microcrystals. We find significant strain heterogeneity within MAPbBr3 (MA = CH3 NH3 + ) crystals in spite of their high optoelectronic quality, and identify both 〈100〉 and 〈110〉 edge dislocations through analysis of their local strain fields. By imaging these defects and strain fields in situ under continuous illumination, we uncover dramatic light-induced dislocation migration across hundreds of nanometers. Further, by selectively studying crystals that are damaged by the X-ray beam, we correlate large dislocation densities and increased nanoscale strains with material degradation and substantially altered optoelectronic properties assessed using photoluminescence microscopy measurements. Our results demonstrate the dynamic nature of extended defects and strain in halide perovskites, which will have important consequences for device performance and operational stability. This article is protected by copyright. All rights reserved.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1521-4095
Volume Title
Publisher
Publisher DOI
Sponsorship
Royal Society (RGF/EA/180085)