Transform-limited photons from a coherent tin-vacancy spin in diamond


Type
Article
Change log
Authors
Trusheim, Matthew E 
Pingault, Benjamin 
Wan, Noel H 
undogan, Mustafa G 
Santis, Lorenzo De 
Abstract

Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phononlimited with an exponential temperature scaling leading to T1 > 10 ms, and the coherence time, T2 reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications.

Description
Keywords
quant-ph, quant-ph, cond-mat.mes-hall
Journal Title
Physical Review Letters
Conference Name
Journal ISSN
0031-9007
1079-7114
Volume Title
124
Publisher
American Physical Society
Rights
All rights reserved
Sponsorship
European Research Council (617985)
Engineering and Physical Sciences Research Council (EP/M013243/1)
European Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (820378)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (676108)