Repository logo
 

Fingerprinting the Hidden Facets of Plasmonic Nanocavities.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Elliott, Eoin 
Bedingfield, Kalun 
Huang, Junyang 
Hu, Shu 

Abstract

The optical properties of nanogap plasmonic cavities formed by a NanoParticle-on-Mirror (NPoM, or patch antenna) are determined here, across a wide range of geometric parameters including the nanoparticle diameter, gap refractive index, gap thickness, facet size and shape. Full understanding of the confined optical modes allows these nanocavities to be utilized in a wide range of experiments across many fields. We show that the gap thickness t and refractive index n are spectroscopically indistinguishable, accounted for by a single gap parameter G = n/t 0.47. Simple tuning of mode resonant frequencies and strength is found for each quasi-normal mode, revealing a spectroscopic "fingerprint" for each facet shape, on both truncated spherical and rhombicuboctahedral nanoparticles. This is applied to determine the most likely nanoscale morphology of facets hidden below each NPoM in experiment, as well as to optimize the constructs for different applications. Simple scaling relations are demonstrated, and an online tool for general use is provided.

Description

Keywords

plasmons, nanoparticle-on-mirror, patch antenna, quasi-normal modes, facet

Journal Title

ACS Photonics

Conference Name

Journal ISSN

2330-4022
2330-4022

Volume Title

9

Publisher

American Chemical Society (ACS)
Sponsorship
Engineering and Physical Sciences Research Council (EP/L027151/1)
Engineering and Physical Sciences Research Council (EP/L015978/1)
Engineering and Physical Sciences Research Council (EP/P029426/1)
Engineering and Physical Sciences Research Council (EP/R020965/1)
European Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (829067)
Engineering and Physical Sciences Research Council (EP/S022953/1)
European Commission Horizon 2020 (H2020) Research Infrastructures (RI) (861950)
European Commission Horizon 2020 (H2020) ERC (883703)
Engineering and Physical Sciences Research Council (EP/N016920/1)