GANDALF - Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids

Change log
Hubber, DA 
Rosotti, GP 
Booth, RA 

GANDALF is a new hydrodynamics and N-body dynamics code designed for investigating planet formation, star formation and star cluster problems. GANDALF is written in C++, parallelised with both OpenMP and MPI and contains a python library for analysis and visualisation. The code has been written with a fully object-oriented approach to easily allow user-defined implementations of physics modules or other algorithms. The code currently contains implementations of Smoothed Particle Hydrodynamics, Meshless Finite-Volume and collisional N-body schemes, but can easily be adapted to include additional particle schemes. We present in this paper the details of its implementation, results from the test suite, serial and parallel performance results and discuss the planned future development. The code is freely available as an open source project on the code-hosting website github at and is available under the GPLv2 license.

hydrodynamics, methods: numerical
Journal Title
Monthly Notices of the Royal Astronomical Society
Conference Name
Journal ISSN
Volume Title
Oxford University Press
European Research Council (341137)
Science and Technology Facilities Council (ST/H008861/1)
This research was supported by the DFG cluster of excellence "Origin and Structure of the Universe", DFG Projects 841797-4, 841798-2 (DAH, GPR), the DISCSIM project, grant agreement 341137 funded by the European Research Council under ERC-2013-ADG (GPR, RAB). Some development of the code and simulations have been carried out on the computing facilities of the Computational centre for Particle and Astrophysics (C2PAP) and on the DiRAC Data Analytic system at the University of Cambridge, operated by the University of Cambridge High Performance Computing Service on behalf of the STFC DiRAC HPC Facility (; the equipment was funded by BIS National E-infrastructure capital grant (ST/K001590/1), STFC capital grants ST/H008861/1 and ST/H00887X/1, and STFC DiRAC Operations grant ST/K00333X/1.