How effective is machine translation on low-resource code-switching? A case study comparing human and automatic metrics

Published version
Repository DOI

Type
Article
Change log
Authors
Nguyen, L 
Bryant, C 
Yuan, Z 
Abstract

This paper presents an investigation into the differences between processing monolingual input and code-switching (CSW) input in the context of machine translation (MT). Specifically, we compare the performance of three MT systems (Google, mBART-50 and M2M-100-big) in terms of their ability to translate monolingual Vietnamese, a low-resource language, and Vietnamese-English CSW respectively. To our knowledge, this is the first study to systematically analyse what might happen when multilingual MT systems are exposed to CSW data using both automatic and human metrics. We find that state-of-the-art neural translation systems not only achieve higher scores on automatic metrics when processing CSW input (compared to monolingual input), but also produce translations that are consistently rated as more semantically faithful by humans. We further suggest that automatic evaluation alone is insufficient for evaluating the translation of CSW input. Our findings establish a new benchmark that offers insights into the relationship between MT and CSW.

Description
Keywords
46 Information and Computing Sciences, 47 Language, Communication and Culture, 4704 Linguistics
Journal Title
Proceedings of the Annual Meeting of the Association for Computational Linguistics
Conference Name
Journal ISSN
0736-587X
Volume Title
Publisher
Association for Computational Linguistics