Repository logo
 

High-throughput single-cell analysis reveals progressive mitochondrial DNA mosaicism throughout life.

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Change log

Authors

Abstract

Heteroplasmic mitochondrial DNA (mtDNA) mutations are a major cause of inherited disease and contribute to common late-onset human disorders. The late onset and clinical progression of mtDNA-associated disease is thought to be due to changing heteroplasmy levels, but it is not known how and when this occurs. Performing high-throughput single-cell genotyping in two mouse models of human mtDNA disease, we saw unanticipated cell-to-cell differences in mtDNA heteroplasmy levels that emerged prenatally and progressively increased throughout life. Proliferating spleen cells and nondividing brain cells had a similar single-cell heteroplasmy variance, implicating mtDNA or organelle turnover as the major force determining cell heteroplasmy levels. The two different mtDNA mutations segregated at different rates with no evidence of selection, consistent with different rates of random genetic drift in vivo, leading to the accumulation of cells with a very high mutation burden at different rates. This provides an explanation for differences in severity seen in human diseases caused by similar mtDNA mutations.

Description

Journal Title

Sci Adv

Conference Name

Journal ISSN

2375-2548
2375-2548

Volume Title

Publisher

American Association for the Advancement of Science (AAAS)

Rights and licensing

Except where otherwised noted, this item's license is described as Attribution 4.0 International
Sponsorship
Cambridge University Hospitals NHS Foundation Trust (CUH) (Unknown)
MRC (MC_UU_00028/7)
Wellcome Trust (212219/Z/18/Z)
MRC (MR/S035699/1)
National Institute for Health and Care Research (IS-BRC-1215-20014)