Repository logo
 

Elucidating Film Loss and the Role of Hydrogen Bonding of Adsorbed Redox Enzymes by Electrochemical Quartz Crystal Microbalance Analysis.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Wagner, Andreas 
Zacarias, Sónia 

Abstract

The immobilization of redox enzymes on electrodes enables the efficient and selective electrocatalysis of useful reactions such as the reversible interconversion of dihydrogen (H2) to protons (H+) and formate to carbon dioxide (CO2) with hydrogenase (H2ase) and formate dehydrogenase (FDH), respectively. However, their immobilization on electrodes to produce electroactive protein films for direct electron transfer (DET) at the protein-electrode interface is not well understood, and the reasons for their activity loss remain vague, limiting their performance often to hour timescales. Here, we report the immobilization of [NiFeSe]-H2ase and [W]-FDH from Desulfovibrio vulgaris Hildenborough on a range of charged and neutral self-assembled monolayer (SAM)-modified gold electrodes with varying hydrogen bond (H-bond) donor capabilities. The key factors dominating the activity and stability of the immobilized enzymes are determined using protein film voltammetry (PFV), chronoamperometry (CA), and electrochemical quartz crystal microbalance (E-QCM) analysis. Electrostatic and H-bonding interactions are resolved, with electrostatic interactions responsible for enzyme orientation while enzyme desorption is strongly limited when H-bonding is present at the enzyme-electrode interface. Conversely, enzyme stability is drastically reduced in the absence of H-bonding, and desorptive enzyme loss is confirmed as the main reason for activity decay by E-QCM during CA. This study provides insights into the possible reasons for the reduced activity of immobilized redox enzymes and the role of film loss, particularly H-bonding, in stabilizing bioelectrode performance, promoting avenues for future improvements in bioelectrocatalysis.

Description

Keywords

hydrogenase, formate dehydrogenase, enzyme immobilization, self-assembled monolayers, bioelectrocatalysis

Journal Title

ACS Catal

Conference Name

Journal ISSN

2155-5435
2155-5435

Volume Title

12

Publisher

American Chemical Society (ACS)
Sponsorship
European Research Council (682833)
Leverhulme Trust (via Imperial College London) (P80336)
Engineering and Physical Sciences Research Council (EP/L016087/1)
EPSRC (1943885)