A semi-periodic initial-value problem for the Kadomtsev–Petviashvili II equation
Published version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
jats:titleAbstract</jats:title> jats:pWe investigate the Cauchy problem on the cylinder, namely the semi-periodic problem where there is periodicity in the jats:italicx</jats:italic>-direction and decay in the jats:italicy</jats:italic>-direction, for the Kadomtsev–Petviashvili II equation by the inverse spectral transform method. For initial data with small jats:italicL</jats:italic> jats:sup1</jats:sup> and jats:italicL</jats:italic> jats:sup2</jats:sup> norms, assuming the zero mass constraint, this initial-value problem is reduced to a Riemann–Hilbert problem on the boundary of certain infinite strips with shift.</jats:p>
Description
Keywords
4904 Pure Mathematics, 49 Mathematical Sciences
Journal Title
Nonlinearity
Conference Name
Journal ISSN
0951-7715
1361-6544
1361-6544
Volume Title
36
Publisher
IOP Publishing