Repository logo
 

Enhancer evolution across 20 mammalian species.


Type

Article

Change log

Authors

Villar, Diego 
Berthelot, Camille 
Aldridge, Sarah 
Rayner, Tim F 
Lukk, Margus 

Abstract

The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution.

Description

Keywords

Animals, Enhancer Elements, Genetic, Evolution, Molecular, Histone Code, Humans, Liver, Mammals, Promoter Regions, Genetic, Transcription Factors

Journal Title

Cell

Conference Name

Journal ISSN

0092-8674
1097-4172

Volume Title

160

Publisher

Elsevier BV
Sponsorship
Cancer Research UK (C14303/A17197)
Cancer Research UK (20412)
Cancer Research UK (15603)
We thank Stephen Watt, Frances Connor, the CRUK-CI Genomics and Bioinformatics cores, Biological Resources Unit (Matthew Clayton), Margaret Brown (West Yorkshire bat hospital), Julie E. Horvath (North Carolina Central University), and Chris Dillingham (University of Cardiff) for technical assistance; Matthieu Muffato for assistance with whole-genome alignments; Claudia Kutter, Gordon Brown, Christine Feig, and Christina Ernst for useful comments and discussions, and the EBI systems team for management of computational resources. This research was supported by Cancer Research UK (D.V., D.T.O.), the European Molecular Biology Laboratory (C.B., P.F.), the Wellcome Trust (WT095908) (P.F.) and (WT098051) (P.F., D.T.O.), the European Research Council, EMBO Young Investigator Programme (D.T.O.), the National Science Foundation (0744979) (T.J.P.), NIH (P40 OD010965, R01 OD010980, R37 MH060233) (A.J.J.) and MRC (U117588498) (J.M.A.T.). Cetacean samples were collected by the UK Cetacean Strandings Investigation Programme, funded by Defra and the Governments of Scotland and Wales.