Repository logo
 

Differentially Private Database Release via Kernel Mean Embeddings

cam.issuedOnline2018-05-31
cam.orpheus.counter12
cam.orpheus.successThu Nov 05 11:53:17 GMT 2020 - Embargo updated
dc.contributor.authorBalog, Matej
dc.contributor.authorTolstikhin, Ilya
dc.contributor.authorSchölkopf, Bernhard
dc.contributor.orcidBalog, Matej [0000-0002-5552-9855]
dc.date.accessioned2019-01-11T00:30:25Z
dc.date.available2019-01-11T00:30:25Z
dc.date.issued2017-10-04
dc.description.abstractWe lay theoretical foundations for new database release mechanisms that allow third-parties to construct consistent estimators of population statistics, while ensuring that the privacy of each individual contributing to the database protected. The proposed framework rests on two main ideas. First, releasing (an estimate of) the kernel mean embedding of the data generating random variable instead of the database itself still allows third-parties to construct consistent estimators of a wide class of population statistics. Second, the algorithm can satisfy the definition of differential privacy by basing the released kernel mean embedding on entirely synthetic data points, while controlling accuracy through the metric available in a Reproducing Kernel Hilbert Space. We describe two instantiations of the proposed framework, suitable under different scenarios, and prove theoretical results guaranteeing differential privacy of the resulting algorithms and the consistency of estimators constructed from their outputs.
dc.identifier.doi10.17863/CAM.35099
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/287784
dc.language.isoeng
dc.publisherMIR Press
dc.publisher.urlhttp://proceedings.mlr.press/v80/
dc.subjectstat.ML
dc.subjectstat.ML
dc.titleDifferentially Private Database Release via Kernel Mean Embeddings
dc.typeConference Object
prism.endingPage431
prism.publicationNameProceedings of Machine Learning Research Volume 80:
prism.startingPage423
prism.volume80
pubs.conference-finish-date2018-07-15
pubs.conference-nameInternational Conference on Machine Learning
pubs.conference-start-date2018-07-10
pubs.funder-project-idEPSRC (1626332)
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.typeConference Paper/Proceeding/Abstract
rioxxterms.versionAM
rioxxterms.versionofrecord10.17863/CAM.35099

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RKHSprivacy_ICML.pdf
Size:
3.17 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
Licence
http://www.rioxx.net/licenses/all-rights-reserved
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DepositLicenceAgreement.pdf
Size:
417.78 KB
Format:
Adobe Portable Document Format