Passive transport through biological membranes
Repository URI
Repository DOI
Type
Change log
Authors
Abstract
The living organisms are varied when viewed from a macroscopic perspective, but on the molecular level they function based on the same fundamental principles. All living organisms are compartmented into cells via cellular walls made of lipid membranes. Through the wall the cell needs to transport nutrients, waste, genetic information and signaling molecules. The cell achieves this task via passive and active transport. In this thesis we focus on passive transport processes. In Chapter 1 of this thesis I introduce the topic of passive transport and its importance for biological systems. In Chapter 2 I use fluorescence methods to determine the passive transport of molecules with self intrinsic fluorescence through lipid membranes. We have built a unique fluorescence microscope which is capable of visualizing the fluorescence of molecules excited with deep UV light. With this new tool we monitored passive transport through the lipid membrane for several biologically significant molecules like for example the bacterial signal indole. Indole is an organic compound linked to important cellular processes like bacterial growth rates and cellular morphology. It is believed that indole is actively transported through the membrane of Escherichia coli via influx and efflux pumps. Here we give an unambiguous proof that indole can freely diffuse through intact bacterial lipid membranes. We extend this study to other molecules with self intrinsic fluorescence , like for example the antibiotic norfloxacin and the fluorescent dye fluorescein. We show that both these molecules can undergo passive transport through the lipid membrane.
Description
This thesis is not available on this repository until the author agrees to make it public. If you are the author of this thesis and would like to make your work openly available, please contact us: thesis@repository.cam.ac.uk.
Cambridge University Library can make a copy of this work available only for the purposes of private study and non-commercial research. Copies should not be shared or saved in any shared facilities. Copyright over the content of these works is with their authors. Theses from the Library collection are considered unpublished works and according to UK legislation quoting from them is not allowed without permission from their author.
If you can commit to these terms, please complete the request form which you can find through this link: https://imagingservices.lib.cam.ac.uk/
Please note that print copies of theses may be available for consultation in the Cambridge University Library's Manuscript reading room. Admission details are at http://www.lib.cam.ac.uk/collections/departments/manuscripts-university-archives