Repository logo

Chronic Paroxetine Treatment Prevents the Emergence of Abnormal Electroencephalogram Oscillations in Huntington's Disease Mice

Published version



Change log


Kantor, S 
Varga, J 
Kulkarni, S 
Morton, AJ 


Disturbance of rapid eye movement (REM) sleep appears early in both patients with Huntington's disease (HD) and mouse models of HD. Selective serotonin reuptake inhibitors are widely prescribed for patients with HD, and are also known to suppress REM sleep in healthy subjects. To test whether selective serotonin reuptake inhibitors can correct abnormal REM sleep and sleep-dependent brain oscillations in HD mice, we treated wild-type and symptomatic R6/2 mice acutely with vehicle and paroxetine (5, 10, and 20 mg/kg). In addition, we treated a group of R6/2 mice chronically with vehicle or paroxetine (20 mg/kg/day) for 8 weeks, with treatment starting before the onset of overt motor symptoms. During and after treatment, we recorded electroencephalogram/electromyographm from the mice. We found that both acute and chronic paroxetine treatment normalized REM sleep in R6/2 mice. However, only chronic paroxetine treatment prevented the emergence of abnormal low-gamma (25-45 Hz) electroencephalogram oscillations in R6/2 mice, an effect that persisted for at least 2 weeks after treatment stopped. Chronic paroxetine treatment also normalized REM sleep theta rhythm in R6/2 mice, but, interestingly, this effect was restricted to the treatment period. By contrast, acute paroxetine treatment slowed REM sleep theta rhythm in WT mice but had no effect on abnormal theta or low-gamma oscillations in R6/2 mice. Our data show that paroxetine treatment, when initiated before the onset of symptoms, corrects both REM sleep disturbances and abnormal brain oscillations, suggesting a possible mechanistic link between early disruption of REM sleep and the subsequent abnormal brain activity in HD mice.



SSRI, Quantitative EEG, Gamma power, Theta oscillation, Biomarker

Journal Title


Conference Name

Journal ISSN


Volume Title


This work was supported by a grant from CHDI Foundation, Inc.