Re-imagining the daniell cell: ampere-hour-level rechargeable Zn-Cu batteries.
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
The Daniell cell (Cu vs. Zn), was invented almost two centuries ago, but has been set aside due to its non-rechargeable nature and limited energy density. However, these cells are exceptionally sustainable because they do not require rare earth elements, are aqueous and easy to recycle. This work addresses key challenges in making Daniell cells relevant to our current energy crisis. First, we propose new approaches to stabilise Zn and Cu plating and stripping processes and create a rechargeable cell. Second, we replace salt bridges with an anion exchange membrane, or a bipolar membrane for alkaline-acid hybrid Zn-Cu batteries operating at 1.56 V. Finally, we apply these changes in pouch cells in order to increase energy and power density. These combined developments result in a rechargeable Daniell cell, which can achieve high areal capacities of 5 mA h cm-2 and can easily be implemented in 1 A h pouch cells.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1754-5706