Repository logo

Gravitational instabilities in a protosolar-like disc - II. continuum emission and mass estimates

Accepted version

Change log


Evans, MG 
Ilee, JD 
Hartquist, TW 
Caselli, P 
Szucs, L 


Gravitational instabilities (GIs) are most likely a fundamental process during the early stages of protoplanetary disc formation. Recently, there have been detections of spiral features in young, embedded objects that appear consistent with GI-driven structure. It is crucial to perform hydrodynamic and radiative transfer simulations of gravitationally unstable discs in order to assess the validity of GIs in such objects, and constrain optimal targets for future observations. We utilize the radiative transfer code LIME (Line modelling Engine) to produce continuum emission maps of a 0.17M ⊙ self-gravitating protosolar-like disc. We note the limitations of using LIME as is and explore methods to improve upon the default gridding. We use CASA to produce synthetic observations of 270 continuum emission maps generated across different frequencies, inclinations and dust opacities. We find that the spiral structure of our protosolar-like disc model is distinguishable across the majority of our parameter space after 1 h of observation, and is especially prominent at 230 GHz due to the favourable combination of angular resolution and sensitivity. Disc mass derived from the observations is sensitive to the assumed dust opacities and temperatures, and therefore can be underestimated by a factor of at least 30 at 850 GHz and 2.5 at 90 GHz. As a result, this effect could retrospectively validate GIs in discs previously thought not massive enough to be gravitationally unstable, which could have a significant impact on the understanding of the formation and evolution of protoplanetary discs.



protoplanetary discs, stars: pre-main-sequence, submillimetre: planetary systems, submillimetre: stars

Journal Title

Monthly Notices of the Royal Astronomical Society

Conference Name

Journal ISSN


Volume Title



Oxford University Press
European Research Council (341137)
Science and Technology Facilities Council (ST/M001334/1)
MGE gratefully acknowledges a studentship from the European Research Council (ERC; project PALs 320620). JDI gratefully acknowledges support from the DISCSIM project, grant agreement 341137, funded by the European Research Council under ERC-2013-ADG. TWH, PC and LSz acknowledge the financial support of the European Research Council (ERC; project PALs 320620). ACB's contribution was supported, in part, by The University of British Columbia and the Canada Research Chairs program.