Supervised machine learning for the early prediction of acute respiratory distress syndrome (ARDS).
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
PURPOSE: Acute respiratory distress syndrome (ARDS) is a serious respiratory condition with high mortality and associated morbidity. The objective of this study is to develop and evaluate a novel application of gradient boosted tree models trained on patient health record data for the early prediction of ARDS. MATERIALS AND METHODS: 9919 patient encounters were retrospectively analyzed from the Medical Information Mart for Intensive Care III (MIMIC-III) data base. XGBoost gradient boosted tree models for early ARDS prediction were created using routinely collected clinical variables and numerical representations of radiology reports as inputs. XGBoost models were iteratively trained and validated using 10-fold cross validation. RESULTS: On a hold-out test set, algorithm classifiers attained area under the receiver operating characteristic curve (AUROC) values of 0.905 when tested for the detection of ARDS at onset and 0.827, 0.810, and 0.790 for the prediction of ARDS at 12-, 24-, and 48-h windows prior to onset, respectively. CONCLUSION: Supervised machine learning predictions may help predict patients with ARDS up to 48 h prior to onset.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1557-8615