Repository logo
 

Adiposity in Children Born Small for Gestational Age Is Associated With β-Cell Function, Genetic Variants for Insulin Resistance, and Response to Growth Hormone Treatment.


Change log

Authors

Thankamony, Ajay 
Jensen, Rikke Beck 
O'Connell, Susan M 
Kirk, Jeremy 

Abstract

BACKGROUND: Genetic susceptibility to insulin resistance is associated with lower adiposity in adults. Insulin resistance, and therefore adiposity, may alter sensitivity to GH. We aimed to determine the relationship between adiposity, genetic susceptibility to insulin resistance or insulin secretion, and response to GH treatment in short children born small for gestational age (SGA). METHODS: In 89 short prepubertal SGA children (age, 6.2 ± 1.6 y; 55 boys) treated with GH for 1 year in a multicenter study, body fat percentage was estimated at baseline and 1 year using dual-energy x-ray absorptiometry. The main outcome measures were treatment-related changes in height, IGF-1 standard deviation score, insulin sensitivity, insulin secretion, and disposition index. Combined multiallele gene scores based on single nucleotide polymorphisms with known associations with lower insulin sensitivity (gene scores for insulin resistance [GS-InRes]) and insulin secretion (gene scores for insulin secretion [GS-InSec]) were analyzed for their relationships with adiposity. RESULTS: Mean percentage body fat at baseline was low compared to normative data (P = .045) and decreased even further on GH treatment (baseline vs 1-year z-scores, -0.26 ± 1.2 vs -1.23 ± 1.54; P < .0001). Baseline percentage body fat was positively associated with IGF-1 responses (p-trends = .042), first-year height gains (B [95% confidence interval], 0.61 cm/y [0.28,0.95]; P < .0001), insulin secretion at baseline (p-trends = .020) and 1 year (p-trends = .004), and disposition index at 1 year (p-trends = .024). GS-InRes was inversely associated with body mass index (-0.13 SD score per allele [-0.26, -0.01]; P = .040), body fat (-0.49% per allele [-0.97, -0.007]; P = .047), and limb fat (-0.81% per allele [-1.62, 0.00]; P = .049) at baseline. During GH treatment, GS-InRes was related to a lesser decline in trunk fat (0.38% per allele [0.16, 0.59]; P = .001) and a higher trunk-limb fat ratio at 1 year (0.04 per allele [0.01, 0.08]; P = .008). GS-InSec was positively associated with truncal fat (0.36% per allele [0.09, 0.63]; P = .009). CONCLUSIONS: Adiposity in SGA children has favorable effects on GH sensitivity and glucose metabolism. The associations with multiallele scores support a causal role of insulin resistance in linking lesser body fat to reduced sensitivity to exogenous GH.

Description

Keywords

Absorptiometry, Photon, Adiposity, Body Composition, Body Height, Child, Child, Preschool, Female, Genetic Variation, Genotype, Glucose, Human Growth Hormone, Humans, Infant, Newborn, Infant, Small for Gestational Age, Insulin, Insulin Resistance, Insulin-Like Growth Factor I, Insulin-Secreting Cells, Male, Pancreatic Function Tests, Recombinant Proteins, Treatment Outcome

Journal Title

J Clin Endocrinol Metab

Conference Name

Journal ISSN

0021-972X
1945-7197

Volume Title

101

Publisher

The Endocrine Society
Sponsorship
Medical Research Council (MC_UU_12015/2)
European Commission (305485)
Medical Research Council (G0600717)
Medical Research Council (MC_U106179472)
Medical Research Council (G0600717/1)
This study was funded by research grants from the Danish Council for Independent Research/Medical Sciences and Novo Nordisk A/S. The research work was also supported by International Center for Research and Research Training in Endocrine Disrupting Effects on Male Reproduction and Child Health (EDMaRC), Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark.