Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants.


Type
Article
Change log
Abstract

The discovery of genetic loci associated with complex diseases has outpaced the elucidation of mechanisms of disease pathogenesis. Here we conducted a genome-wide association study (GWAS) for coronary artery disease (CAD) comprising 181,522 cases among 1,165,690 participants of predominantly European ancestry. We detected 241 associations, including 30 new loci. Cross-ancestry meta-analysis with a Japanese GWAS yielded 38 additional new loci. We prioritized likely causal variants using functionally informed fine-mapping, yielding 42 associations with less than five variants in the 95% credible set. Similarity-based clustering suggested roles for early developmental processes, cell cycle signaling and vascular cell migration and proliferation in the pathogenesis of CAD. We prioritized 220 candidate causal genes, combining eight complementary approaches, including 123 supported by three or more approaches. Using CRISPR-Cas9, we experimentally validated the effect of an enhancer in MYO9B, which appears to mediate CAD risk by regulating vascular cell motility. Our analysis identifies and systematically characterizes >250 risk loci for CAD to inform experimental interrogation of putative causal mechanisms for CAD.

Description
Keywords
Humans, Coronary Artery Disease, Genome-Wide Association Study
Journal Title
Nat Genet
Conference Name
Journal ISSN
1061-4036
1546-1718
Volume Title
54
Publisher
Nature Research
Sponsorship
Medical Research Council (G0800270)
European Research Council (268834)
Medical Research Council (MR/L003120/1)
British Heart Foundation (None)
British Heart Foundation (RG/18/13/33946)
National Institute for Health Research (IS-BRC-1215-20014)