A data-centric bottom up model for generation of stochastic internal load profiles based on space-use type

Change log
Choudhary, Ruchi 
Heo, Yeonsook 
Aston, John 

There is currently no established methodology for generation of synthetic stochastic internal load profiles for input into building energy simulation. In this paper, a Functional Data Analysis approach is used to propose a new data-centric bottom-up model of plug loads based on hourly data monitored at a high spatial resolution and by space-use type for a case-study building. The model comprises a set of fundamental Principal Components (PCs) that describe the structure of all data samples in terms of amplitude and phase. Scores (or weightings) for each daily demand profile express the contribution of each PC to the demand. Together the principal components and the scores constitute a structure-based model potentially applicable beyond the building considered. The results show good agreement between samples generated using the model and monitored data for key parameters of interest including the timing of the daily peak demand.

Functional Data Analysis, Principal Components, plug loads, stochastic
Journal Title
Journal of Building Performance Simulation
Conference Name
Journal ISSN
Volume Title
Taylor & Francis
Engineering and Physical Sciences Research Council (EP/L024454/1)
EPSRC (1492758)
Engineering and Physical Sciences Research Council (EP/K021672/2)
Engineering and Physical Sciences Research Council (EP/F034350/1)