Regulation of Indole Signalling during the Transition of E. coli from Exponential to Stationary Phase.

Change log
Gaimster, Hannah 

During the transition from exponential to stationary phase E. coli produces a substantial quantity of the small, aromatic signalling molecule indole. In LB medium the supernatant indole concentration reaches a maximum of 0.5-1 mM. At this concentration indole has been implicated in many processes inducing acid resistance and the modulation of virulence. It has recently been shown that cell-associated indole transiently reaches a very high concentration (approx. 60 mM) during stationary phase entry, presumably because indole is being produced more rapidly than it can leave the cell. It is proposed that this indole pulse inhibits growth and cell division, causing the culture to enter stationary phase before nutrients are completely exhausted, with benefits for survival in long-term stationary phase. This study asks how E. coli cells rapidly upregulate indole production during stationary phase entry and why the indole pulse has a duration of only 10-15 min. We find that at the start of the pulse tryptophanase synthesis is triggered by glucose depletion and that this is correlates with the up-regulation of indole synthesis. The magnitude and duration of the resulting indole pulse are dependent upon the availability of exogenous tryptophan. Indole production stops when all the available tryptophan is depleted and the cell-associated indole equilibrates with the supernatant.

Escherichia coli, Escherichia coli Proteins, Glucose, Indoles, Signal Transduction, Tryptophan, Tryptophanase
Journal Title
PLoS One
Conference Name
Journal ISSN
Volume Title
Public Library of Science (PLoS)
Biotechnology and Biological Sciences Research Council (BB/F002912/1)
HG was funded by a Biotechnology and Biological Sciences Research Council Doctoral Training Grant studentship (, grant number PCAG-EJNF.