Horofunctions on graphs of linear growth


Type
Article
Change log
Authors
Tointon, MCH 
Yadin, A 
Abstract

We prove that a linear growth graph has finitely many horofunctions. This provides a short and simple proof that any finitely generated infinite group of linear growth is virtually cyclic.

Description
Keywords
math.MG, math.MG, math.CO, math.GR
Journal Title
Comptes Rendus Mathematique
Conference Name
Journal ISSN
1631-073X
1778-3569
Volume Title
354
Publisher
Elsevier BV
Sponsorship
European Research Council (617129)