Radically filtered quasi-hereditary algebras and rigidity of tilting modules
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
HAZI, AMIT
Abstract
jats:titleAbstract</jats:title>jats:pLetjats:italicA</jats:italic>be a quasi-hereditary algebra. We prove that in many cases, a tilting module is rigid (i.e. has identical radical and socle series) if it does not have certain subquotients whose composition factors extend more than one layer in the radical series or the socle series. We apply this theorem to show that the restricted tilting modules forjats:italicSL</jats:italic>jats:sub4</jats:sub>(jats:italicK</jats:italic>) are rigid, wherejats:italicK</jats:italic>is an algebraically closed field of characteristicjats:italicp</jats:italic>≥ 5.</jats:p>
Description
Keywords
4904 Pure Mathematics, 49 Mathematical Sciences
Journal Title
Mathematical Proceedings of the Cambridge Philosophical Society
Conference Name
Journal ISSN
0305-0041
1469-8064
1469-8064
Volume Title
163
Publisher
Cambridge University Press (CUP)