Novel near-infrared II aggregation-induced emission dots for in vivo bioimaging.

Change log
Lin, Jiacheng 
Zeng, Xiaodong 
Xiao, Yuling 
Tang, Lin 
Nong, Jinxia 

Near-infrared II fluorescence imaging holds great promise for in vivo imaging and imaging-guided surgery with deep penetration and high spatiotemporal resolution. However, most NIR-II aromatic luminophores suffer from the notorious aggregation-caused quenching (ACQ) effect in the aqueous solution, which largely hinders their biomedical application in vivo. In this study, the first NIR-II organic aggregation-induced emission (AIE) fluorophore (HLZ-BTED), encapsulated as nanoparticles (HLZ-BTED dots) for in vivo biomedical imaging, was designed and synthesized. The NIR-II AIE HLZ-BTED dots showed high temporal resolution, high photostability, outstanding water-solubility and biocompatibility in vitro and in vivo. The HLZ-BTED dots were further used for long-term breast tumor imaging and visualizing tumor-feeding blood vessels, long-term hind limb vasculature and incomplete hind limb ischemia. More importantly, as a proof-of-concept, this is the first time that non-invasive and real-time NIR-II imaging of the gastrointestinal tract in health and disease has been performed, making the AIE dots a promising tool for gastrointestinal (GI) tract research, such as understanding the healthy status of GI peristalsis, diagnosing and evaluating intestinal motility dysfunction, and assessing drug effects on intestinal obstruction.

34 Chemical Sciences, Bioengineering, Digestive Diseases, Nanotechnology
Journal Title
Chem Sci
Conference Name
Journal ISSN
Volume Title
Royal Society of Chemistry (RSC)