Repository logo
 

Durable resistance to crop pathogens: an epidemiological framework to predict risk under uncertainty.

Published version
Peer-reviewed

Change log

Authors

Lo Iacono, Giovanni 
van den Bosch, Frank 
Gilligan, Chris A 

Abstract

Increasing the durability of crop resistance to plant pathogens is one of the key goals of virulence management. Despite the recognition of the importance of demographic and environmental stochasticity on the dynamics of an epidemic, their effects on the evolution of the pathogen and durability of resistance has not received attention. We formulated a stochastic epidemiological model, based on the Kramer-Moyal expansion of the Master Equation, to investigate how random fluctuations affect the dynamics of an epidemic and how these effects feed through to the evolution of the pathogen and durability of resistance. We focused on two hypotheses: firstly, a previous deterministic model has suggested that the effect of cropping ratio (the proportion of land area occupied by the resistant crop) on the durability of crop resistance is negligible. Increasing the cropping ratio increases the area of uninfected host, but the resistance is more rapidly broken; these two effects counteract each other. We tested the hypothesis that similar counteracting effects would occur when we take account of demographic stochasticity, but found that the durability does depend on the cropping ratio. Secondly, we tested whether a superimposed external source of stochasticity (for example due to environmental variation or to intermittent fungicide application) interacts with the intrinsic demographic fluctuations and how such interaction affects the durability of resistance. We show that in the pathosystem considered here, in general large stochastic fluctuations in epidemics enhance extinction of the pathogen. This is more likely to occur at large cropping ratios and for particular frequencies of the periodic external perturbation (stochastic resonance). The results suggest possible disease control practises by exploiting the natural sources of stochasticity.

Description

Keywords

Crops, Agricultural, Models, Theoretical, Uncertainty

Journal Title

PLoS Comput Biol

Conference Name

Journal ISSN

1553-734X
1553-7358

Volume Title

9

Publisher

Public Library of Science (PLoS)
Sponsorship
BBSRC (BB/B502379/1)
GL is funded by the ESPA award “Dynamic Drivers of Disease in Africa Consortium”. The work of FvdB is supported by Rothamsted Research, who receives grant aided assistance from the Biological and Biotechnological Research Council of the United Kingdom. CAG gratefully acknowledges the support of a BBSRC Professorial Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.