Mastication-Enhanced Taste-Based Classification of Multi-Ingredient Dishes for Robotic Cooking


Change log
Authors
Sochacki, Grzegorz 
Abdulali, Arsen 
Iida, Fumiya 
Abstract

Chefs frequently rely on their taste to assess the content and flavor of dishes during cooking. While tasting the food, the mastication process also provides continuous feedback by exposing the taste receptors to food at various stages of chewing. Since different ingredients of the dish undergo specific changes during chewing, the mastication helps to understand the food content. The current methods of electronic tasting, on the contrary, always use a single taste snapshot of a homogenized sample. We propose a robotic setup that uses the mixing to imitate mastication and tastes the dish at two different mastication phases. Each tasting is done using a conductance probe measuring conductance at multiple, spatially distributed points. This data is used to classify 9 varieties of scrambled eggs with tomatoes. We test four different tasting methods and analyze the resulting classification performance, showing a significant improvement over tasting homogenized samples. The experimental results show that tasting at two states of mechanical processing of the food increased classification F1 score to 0.93 in comparison to the traditional tasting of a homogenized sample resulting in F1 score of 0.55. We attribute this performance increase to the fact that different dishes are affected differently by the mixing process, and have different spatial distributions of the salinity. It helps the robot to distinguish between dishes of the same average salinity, but different content of ingredients. This work demonstrates that mastication plays an important role in robotic tasting and implementing it can improve the tasting ability of robotic chefs.

Description
Keywords
Robotics and AI, electronic tongues, mastication, robotic chef, robotic cooking, taste feedback, salinity sensing, conductance sensing
Journal Title
Frontiers in Robotics and AI
Conference Name
Journal ISSN
2296-9144
Volume Title
9
Publisher
Frontiers Media S.A.