Zirconium ferrite incorporated zeolitic imidazolate framework-8: a suitable photocatalyst for degradation of dopamine and sulfamethoxazole in aqueous solution.

Change log
Ogunkunle, Olaoluwa A 
Oderinde, Rotimi A 

The complete removal of pharmaceutical wastes from polluted water systems is a global challenge. Therefore, this study incorporates zirconium ferrite (ZrFe2O4) into zeolitic imidazolate framework-8 (ZIF-8) to form ZrFe2O4@ZIF-8. The ZrFe2O4@ZIF-8 is a photocatalyst for removing dopamine (DOP) and sulfamethoxazole (SMX) from an aqueous solution. The scanning electron micrograph revealed the surfaces of ZrFe2O4 and ZrFe2O4@ZIF-8 to be heterogeneous with irregularly shaped and sized particles. The transmission electron micrograph (TEM) images of ZrFe2O4 and ZrFe2O4@ZIF-8 showed an average particle size of 24.32 nm and 32.41 nm, respectively, with a bandgap of 2.10 eV (ZrFe2O4@ZIF-8) and 2.05 eV (ZrFe2O4). ZrFe2O4@ZIF-8 exhibited a better degradation capacity towards DOP and SMX than ZrFe2O4. ZrFe2O4@ZIF-8 expressed a complete (100%) degradation of DOP and SMX during the photodegradation process. Interestingly, the process involved both adsorption and photocatalytic degradation simultaneously. ZrFe2O4@ZIF-8 demonstrated high stability with a consistent regeneration capacity of 98.40% for DOP and 94.00% for SMX at the 10th cycle of treatment in a process described by pseudo-first-order kinetics. The study revealed ZrFe2O4@ZIF-8 as a promising photocatalyst for the purification of DOP and SMX-contaminated water systems.


Acknowledgements: The authors appreciate the support from the Department of Chemistry, University of Ibadan, Nigeria and the Department of Chemistry, University of Cambridge, UK, for analysis.

34 Chemical Sciences, 3406 Physical Chemistry
Journal Title
Conference Name
Journal ISSN
Volume Title
Royal Society of Chemistry (RSC)
University of Ibadan (Unassigned)