Repository logo

Charged-hadron production in pp, p+Pb, Pb+Pb, and Xe+Xe collisions at √sNN = 5 TeV with the ATLAS detector at the LHC

Published version

Repository DOI

Change log


Aad, G 
Abbott, B 
Abeling, K 
Abidi, SH 
Aboulhorma, A 


jats:titleAjats:scbstract</jats:sc> </jats:title>jats:pThis paper presents measurements of charged-hadron spectra obtained in jats:italicpp</jats:italic>, jats:italicp</jats:italic>+Pb, and Pb+Pb collisions at jats:inline-formulajats:alternativesjats:tex-math$$ \sqrt{s} $$</jats:tex-math><mml:math xmlns:mml=""> mml:msqrt mml:mis</mml:mi> </mml:msqrt> </mml:math></jats:alternatives></jats:inline-formula> or jats:inline-formulajats:alternativesjats:tex-math$$ \sqrt{s_{\textrm{NN}}} $$</jats:tex-math><mml:math xmlns:mml=""> mml:msqrt mml:msub mml:mis</mml:mi> mml:miNN</mml:mi> </mml:msub> </mml:msqrt> </mml:math></jats:alternatives></jats:inline-formula> = 5jats:italic.</jats:italic>02 TeV, and in Xe+Xe collisions at jats:inline-formulajats:alternativesjats:tex-math$$ \sqrt{s_{\textrm{NN}}} $$</jats:tex-math><mml:math xmlns:mml=""> mml:msqrt mml:msub mml:mis</mml:mi> mml:miNN</mml:mi> </mml:msub> </mml:msqrt> </mml:math></jats:alternatives></jats:inline-formula> = 5jats:italic.</jats:italic>44 TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pbjats:supjats:italic−</jats:italic>1</jats:sup>, 28 nbjats:supjats:italic−</jats:italic>1</jats:sup>, 0.50 nbjats:supjats:italic−</jats:italic>1</jats:sup>, and 3 jats:italicμ</jats:italic>bjats:supjats:italic−</jats:italic>1</jats:sup>, respectively. The nuclear modification factors jats:italicR</jats:italic>jats:subjats:italicp</jats:italic>Pb</jats:sub> and jats:italicR</jats:italic>jats:subAA</jats:sub> are obtained by comparing the spectra in heavy-ion and jats:italicpp</jats:italic> collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor jats:italicR</jats:italic>jats:subjats:italicp</jats:italic>Pb</jats:sub> shows a moderate enhancement above unity with a maximum at jats:italicp</jats:italic>jats:subT</jats:sub> ≈ 3 GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct jats:italicp</jats:italic>jats:subT</jats:sub>-dependence with a local maximum at jats:italicp</jats:italic>jats:subT</jats:sub> ≈ 2 GeV and a local minimum at jats:italicp</jats:italic>jats:subT</jats:sub> ≈ 7 GeV. This dependence is more distinguishable in more central collisions. No significant |jats:italicη</jats:italic>|-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe jats:italicR</jats:italic>jats:subAA</jats:sub> better in central collisions and in the jats:italicp</jats:italic>jats:subT</jats:sub> range from about 10 to 100 GeV.</jats:p>


Acknowledgements: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MNE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TENMAK, Türkiye; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; PRIMUS 21/SCI/017 and UNCE SCI/013, Czech Republic; COST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and MINERVA, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref. [75].


5106 Nuclear and Plasma Physics, 5107 Particle and High Energy Physics, 51 Physical Sciences

Journal Title

Journal of High Energy Physics

Conference Name

Journal ISSN


Volume Title



Springer Science and Business Media LLC