Repository logo

Tumor suppressors inhibit reprogramming of African spiny mouse ( Acomys) fibroblasts to induced pluripotent stem cells.

Published version



Change log


Sandoval, Aaron Gabriel W  ORCID logo
Maden, Malcolm 


Background: The African spiny mouse ( Acomys) is an emerging mammalian model for scar-free regeneration, and further study of Acomys could advance the field of regenerative medicine. Isolation of pluripotent stem cells from Acomys would allow for development of transgenic or chimeric animals and in vitro study of regeneration; however, the reproductive biology of Acomys is not well characterized, complicating efforts to derive embryonic stem cells. Thus, we sought to generate Acomys induced pluripotent stem cells (iPSCs) by reprogramming somatic cells back to pluripotency. Methods: To generate Acomys iPSCs, we attempted to adapt established protocols developed in Mus. We utilized a PiggyBac transposon system to genetically modify Acomys fibroblasts to overexpress the Yamanaka reprogramming factors as well as mOrange fluorescent protein under the control of a doxycycline-inducible TetON operon system. Results: Reprogramming factor overexpression caused Acomys fibroblasts to undergo apoptosis or senescence. When SV40 Large T antigen (SV40 LT) was added to the reprogramming cocktail, Acomys cells were able to dedifferentiate into pre-iPSCs. Although use of 2iL culture conditions induced formation of colonies resembling Mus PSCs, these Acomys iPS-like cells lacked pluripotency marker expression and failed to form embryoid bodies. An EOS-GiP system was unsuccessful in selecting for bona fide Acomys iPSCs; however, inclusion of Nanog in the reprogramming cocktail along with 5-azacytidine in the culture medium allowed for generation of Acomys iPSC-like cells with increased expression of several naïve pluripotency markers. Conclusions: There are significant roadblocks to reprogramming Acomys cells, necessitating future studies to determine Acomys-specific reprogramming factor and/or culture condition requirements. The requirement for SV40 LT during Acomys dedifferentiation may suggest that tumor suppressor pathways play an important role in Acomys regeneration and that Acomys may possess unreported cancer resistance.



Acomys, African spiny mouse, SV40 Large T antigen, dedifferentiation, induced pluripotent stem cell, regeneration, reprogramming, tumor suppressor

Journal Title

Wellcome Open Res

Conference Name

Journal ISSN


Volume Title



F1000 Research Ltd
Wellcome Trust (203151)