Suppressed-gap millimetre wave kinetic inductance detectors using DC-bias current
Published version
Repository URI
Repository DOI
Change log
Authors
Abstract
In this study, we evaluate the suitability of using DC-biased aluminium resonators as low-frequency kinetic inductance detectors operating in the frequency range of 50 - 120 GHz. Our analysis routine for supercurrent-biased resonators is based on the Usadel equations and gives outputs including density of states, complex conductivities, transmission line properties, and quasiparticle lifetimes. Results from our analysis confirm previous experimental observations on resonant frequency tuneability and retention of high quality factor. Crucially, our analysis suggests that DC-biased resonators demonstrate significantly suppressed superconducting density of states gap. Consequently these resonators have lower frequency detection threshold and are suitable materials for low-frequency kinetic inductance detectors.
Description
Funder: CSC Cambridge Scholarship
Keywords
Journal Title
Conference Name
Journal ISSN
1361-6463