Repository logo
 

Top-quark physics at the CLIC electron-positron linear collider

Published version
Peer-reviewed

Change log

Authors

Abramowicz, H 
Alipour Tehrani, N 
Arominski, D 
Benhammou, Y 
Benoit, M 

Abstract

jats:titleAjats:scbstract</jats:sc> </jats:title>jats:pThe Compact Linear Collider (CLIC) is a proposed future high-luminosity linear electron-positron collider operating at three energy stages, with nominal centre-of-mass energies jats:inline-formulajats:alternativesjats:tex-math$$ \sqrt{s} $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> mml:msqrt mml:mis</mml:mi> </mml:msqrt> </mml:math></jats:alternatives></jats:inline-formula> = 380 GeV, 1jats:italic.</jats:italic>5 TeV, and 3 TeV. Its aim is to explore the energy frontier, providing sensitivity to physics beyond the Standard Model (BSM) and precision measurements of Standard Model processes with an emphasis on Higgs boson and top-quark physics. The opportunities for top-quark physics at CLIC are discussed in this paper. The initial stage of operation focuses on top-quark pair production measurements, as well as the search for rare flavour-changing neutral current (FCNC) top-quark decays. It also includes a top-quark pair production threshold scan around 350 GeV which provides a precise measurement of the top-quark mass in a well-defined theoretical framework. At the higher-energy stages, studies are made of top-quark pairs produced in association with other particles. A study of tjats:sup̄</jats:sup>tH production including the extraction of the top Yukawa coupling is presented as well as a study of vector boson fusion (VBF) production, which gives direct access to high-energy electroweak interactions. Operation above 1 TeV leads to more highly collimated jet environments where dedicated methods are used to analyse the jet constituents. These techniques enable studies of the top-quark pair production, and hence the sensitivity to BSM physics, to be extended to higher energies. This paper also includes phenomenological interpretations that may be performed using the results from the extensive top-quark physics programme at CLIC.</jats:p>

Description

Keywords

e plus -e- Experiments, Top physics

Journal Title

Journal of High Energy Physics

Conference Name

Journal ISSN

1126-6708
1029-8479

Volume Title

2019

Publisher

Springer Science and Business Media LLC
Sponsorship
European Commission (262025)
European Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (unknown)