Repository logo

Attention-Based Machine Vision Models and Techniques for Solar Wind Speed Forecasting Using Solar EUV Images

Published version

Change log



jats:titleAbstract</jats:title>jats:pExtreme ultraviolet images taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory make it possible to use deep vision techniques to forecast solar wind speed—a difficult, high‐impact, and unsolved problem. At a 4 day time horizon, this study uses attention‐based models and a set of methodological improvements to deliver an 11.1% lower RMSE and a 17.4% higher prediction correlation compared to the previous work testing on the period from 2010 to 2018. Our analysis shows that attention‐based models combined with our pipeline consistently outperform convolutional alternatives. Our study shows a large performance improvement by using a 30 min as opposed to a daily sampling frequency. Our model has learned relationships between coronal holes' characteristics and the speed of their associated high‐speed streams, agreeing with empirical results. Our study finds a strong dependence of our best model on the phase of the solar cycle, with the best performance occurring in the declining phase.</jats:p>



machine learning, solar wind speed, solar images, computer vision, vision transformer, coronal holes

Journal Title

Space Weather

Conference Name

Journal ISSN


Volume Title



American Geophysical Union (AGU)
Natural Environment Research Council (NERC) (NE/V00249X/1, NE/R016038/1)
UKRI | Engineering and Physical Sciences Research Council (EPSRC) (EP/M50659X/1, EP/S001530/1)