Repository logo
 

Investigating the effect of limited spectral information on NIRS-derived changes in hemoglobin and cytochrome-c-oxidase concentration with a diffusion-based model.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Leadley, Georgina 
Cooper, Robert J 
Austin, Topun 
Bale, Gemma 

Abstract

This paper investigates the theoretical capability of near-infrared spectroscopy (NIRS) systems to accurately measure changes in the oxidation state of cerebral cytochrome-c-oxidase (CCO) alongside the hemoglobins, for a deeper understanding of NIRS limitations. Concentration changes of oxy and deoxyhemoglobin (HbO and HbR) indicate the oxygen status of blood vessels and correlate with several other physiological parameters across different pathologies. The oxidation state of CCO indicates cellular energy usage efficiency through oxidative metabolism, potentially serving as a biomarker for brain and other tissue disorders. This study employs an analytical model based on the diffusion equation and statistical analyses to explore the dependency of estimated concentration changes on various systematic parameters, such as choice of wavelengths, spectral bandwidth, and uncertainties in extinction coefficient (ε) and differential pathlength factor (DPF). When there is a 10% uncertainty in DPF and ε, errors were found to be highly dependent on the number of discrete wavelengths, but not on their bandwidth if appropriate considerations are taken to account for it.

Description

Keywords

4004 Chemical Engineering, 40 Engineering, Neurosciences

Journal Title

Biomed Opt Express

Conference Name

Journal ISSN

2156-7085
2156-7085

Volume Title

Publisher

Optica Publishing Group
Sponsorship
Engineering and Physical Sciences Research Council (EP/S022139/1)