Repository logo
 

Exploring electroencephalography with a model inspired by quantum mechanics.

Published version
Peer-reviewed

Change log

Authors

Popiel, Nicholas JM 
Metrow, Colin 
Laforge, Geoffrey 
Owen, Adrian M 
Stojanoski, Bobby 

Abstract

An outstanding issue in cognitive neuroscience concerns how the brain is organized across different conditions. For instance, during the resting-state condition, the brain can be clustered into reliable and reproducible networks (e.g., sensory, default, executive networks). Interestingly, the same networks emerge during active conditions in response to various tasks. If similar patterns of neural activity have been found across diverse conditions, and therefore, different underlying processes and experiences of the environment, is the brain organized by a fundamental organizational principle? To test this, we applied mathematical formalisms borrowed from quantum mechanisms to model electroencephalogram (EEG) data. We uncovered a tendency for EEG signals to be localized in anterior regions of the brain during "rest", and more uniformly distributed while engaged in a task (i.e., watching a movie). Moreover, we found analogous values to the Heisenberg uncertainty principle, suggesting a common underlying architecture of human brain activity in resting and task conditions. This underlying architecture manifests itself in the novel constant KBrain, which is extracted from the brain state with the least uncertainty. We would like to state that we are using the mathematics of quantum mechanics, but not claiming that the brain behaves as a quantum object.

Description

Keywords

5202 Biological Psychology, 5204 Cognitive and Computational Psychology, 51 Physical Sciences, 52 Psychology, Neurosciences, 1.1 Normal biological development and functioning, Mental health, Neurological

Journal Title

Sci Rep

Conference Name

Journal ISSN

2045-2322
2045-2322

Volume Title

11

Publisher

Springer Science and Business Media LLC