Miniaturisation of pH Holographic Sensors for Nano-Bioreactors
Repository URI
Repository DOI
Change log
Authors
Abstract
Monitoring and controlling pH is of utmost importance in bioprocessing as it directly affects product yield and quality. Multiplexed experiments can be performed in nanobioreactors for optimisation of yield and cell heterogeneity in a relatively quick and inexpensive manner. In this thesis, a pH holographic sensor (holosensor) is miniaturised to 3.11 nL in volume and integrated into a PDMS-glass microfluidic chip for monitoring the growth of Lactobacillus casei Shirota. Although other established methods for monitoring cell cultures can be utilised, miniaturised holosensors enable real-time and non-consumptive monitoring of the bacterial cell culture growth medium. The 2-hydroxyethylmethacrylate (HEMA)-co-2-(trifluoromethyl) propenoic acid (TFMPA) holosensor was fabricated using an adapted technique from photolithography, coupled with the use of a polymerisation inhibitor to control the gel polymerisation with diameters not exceeding a standard deviation of 0.067. The hologram brightness was optimised to 1.05 ms integration time with 36X magnification using a low power (0.290 mW) 532 nm green continuous wave (CW) laser with a devised beam-offset technique. The holosensor was characterised with ionic strength balanced (9.50 mS/cm) McIIvaine pH buffers and a calibration curve plotted together with measured ionic strength, optical density at 600 nm (OD600) and pH. Correspondingly, RGB-xyY transformed values were plotted in the CIE 1931 chromaticity diagram. Later, a miniaturised 0.4