Repository logo

Harnessing the power of intersection for pattern recognition: a novel unsupervised learning method and its application to financial engineering

Published version

Change log


Haddad, Michel Ferreira Cardia  ORCID logo


jats:titleAbstract</jats:title>jats:pIn the present paper a data‐driven hard cluster analysis derived from a novel similarity measure is proposed to support financial investors in their portfolio management decision‐making process. The main objective of the proposed method is to provide a less arbitrary learning procedure to quantify similarity levels between investment alternatives (pairwise) as well as revealing clustering patterns (whole sample). This is especially useful during periods of high volatility, when investment alternatives tend to become more similar and, therefore, harder to distinguish between themselves. The method dynamics may be readily interpreted through a clear data visualisation. The advantages and caveats of the proposed method is compared to the most popular class of cluster analysis, applied to the well‐known Fisher's Iris dataset. Such results show a slightly superior performance of the proposed method but, most importantly, through remarkably different clustering allocation approaches. Moreover, further empirical results applied to daily data reflecting a period of 15 years of time series of economies/stock markets of the Group of Seven (G7) illustrate the potential practical usefulness of the proposed unsupervised learning method, particularly, for portfolio strategy, asset allocation, and investment diversification.</jats:p>


Funder: Cambridge Commonwealth, European and International Trust; Id:

Funder: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES): BEX 2220/15‐6; Id:


3801 Applied Economics, 35 Commerce, Management, Tourism and Services, 38 Economics, 3502 Banking, Finance and Investment, 46 Information and Computing Sciences

Journal Title

Engineering Reports

Conference Name

Journal ISSN


Volume Title