Repository logo
 

X-rays across the galaxy population – I. Tracing the main sequence of star formation

Published version
Peer-reviewed

Type

Article

Change log

Authors

Coil, AL 
Georgakakis, A 

Abstract

We use deep Chandra imaging to measure the distribution of X-ray luminosities (LX) for samples of star-forming galaxies as a function of stellar mass and redshift, using a Bayesian method to push below the nominal X-ray detection limits. Our luminosity distributions all show narrow peaks at LX ≲ 1042 erg s−1 that we associate with star formation, as opposed to AGN that are traced by a broad tail to higher LX. Tracking the luminosity of these peaks as a function of stellar mass reveals an ‘X-ray main sequence’ with a constant slope ≈0.63 ± 0.03 over 8.5≲logM∗/M⊙≲11.5 and 0.1 ≲ z ≲ 4, with a normalization that increases with redshift as (1 + z)3.79±0.12. We also compare the peak X-ray luminosities with UV-to-IR tracers of star formation rates (SFRs) to calibrate the scaling between LX and SFR. We find that LX ∝ SFR0.83 × (1 + z)1.3, where the redshift evolution and non-linearity likely reflect changes in high-mass X-ray binary populations of star-forming galaxies. Using galaxies with a broader range of SFR, we also constrain a stellar-mass-dependent contribution to LX, likely related to low-mass X-ray binaries. Using this calibration, we convert our X-ray main sequence to SFRs and measure a star-forming main sequence with a constant slope ≈0.76 ± 0.06 and a normalization that evolves with redshift as (1 + z)2.95±0.33. Based on the X-ray emission, there is no evidence for a break in the main sequence at high stellar masses, although we cannot rule out a turnover given the uncertainties in the scaling of LX to SFR.

Description

Keywords

galaxies: evolution, galaxies: star formation, X-rays: galaxies

Journal Title

Monthly Notices of the Royal Astronomical Society

Conference Name

Journal ISSN

0035-8711
1365-2966

Volume Title

465

Publisher

Oxford University Press
Sponsorship
European Research Council (340442)
JA acknowledges support from ERC Advanced Grant FEEDBACK 340442. ALC acknowledges support from NSF CAREER award AST-1055081. AG acknowledges the THALES project 383549 that is jointly funded by the European Union and the Greek Government in the framework of the programme “Education and lifelong learning”. This work is based in part on observations taken by the 3D-HST Treasury Program (GO 12177 and 12328) with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Based in part on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile , under Large Program 185.A-0791, and made available by the VUDS team at the CESAM data center, Laboratoire d’Astrophysique de Marseille, France. The scientific results reported in this article are based to a significant degree on observations made by the Chandra X-ray Observatory.