Repository logo

Interface and Composition Analysis on Perovskite Solar Cells.

Change log


Matteocci, Fabio 
Busby, Yan 
Pireaux, Jean-Jacques 
Cacovich, Stefania 


Organometal halide (hybrid) perovskite solar cells have been fabricated following four different deposition procedures and investigated in order to find correlations between the solar cell characteristics/performance and their structure and composition as determined by combining depth-resolved imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), and analytical scanning transmission electron microscopy (STEM). The interface quality is found to be strongly affected by the perovskite deposition procedure, and in particular from the environment where the conversion of the starting precursors into the final perovskite is performed (air, nitrogen, or vacuum). The conversion efficiency of the precursors into the hybrid perovskite layer is compared between the different solar cells by looking at the ToF-SIMS intensities of the characteristic molecular fragments from the perovskite and the precursor materials. Energy dispersive X-ray spectroscopy in the STEM confirms the macroscopic ToF-SIMS findings and allows elemental mapping with nanometer resolution. Clear evidence for iodine diffusion has been observed and related to the fabrication procedure.



EDX-STEM, ToF-SIMS, XPS, filaments, perovskite solar cells

Journal Title

ACS Appl Mater Interfaces

Conference Name

Journal ISSN


Volume Title



American Chemical Society (ACS)
European Research Council (259619)
European Commission (312483)
We acknowledge Lucio Cinà, Simone Casaluci, Stefano Razza and Narges Yaghoobi Nia for the technical support, “Polo Solare Organico” Regione Lazio, the “DSSCX” MIUR-PRIN2010 and FP7 ITN “Destiny” for funds. G.D., S.C. and C.D. acknowledge funding from ERC under grant number 259619 PHOTO EM. C.D. acknowledges financial support from the EU under grant number 312483 ESTEEM2.