Polypharmacological in Silico Bioactivity Profiling and Experimental Validation Uncovers Sedative-Hypnotic Effects of Approved and Experimental Drugs in Rat
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
In this work, we describe the computational ("in silico") mode-of-action analysis of CNS-active drugs, which is taking both multiple simultaneous hypotheses as well as sets of protein targets for each mode-of-action into account, and which was followed by successful prospective in vitro and in vivo validation. Using sleep-related phenotypic readouts describing both efficacy and side effects for 491 compounds tested in rat, we defined an "optimal" (desirable) sleeping pattern. Compounds were subjected to in silico target prediction (which was experimentally confirmed for 21 out of 28 cases), followed by the utilization of decision trees for deriving polypharmacological bioactivity profiles. We demonstrated that predicted bioactivities improved classification performance compared to using only structural information. Moreover, DrugBank molecules were processed via the same pipeline, and compounds in many cases not annotated as sedative-hypnotic (alcaftadine, benzatropine, palonosetron, ecopipam, cyproheptadine, sertindole, and clopenthixol) were prospectively validated in vivo. Alcaftadine, ecopipam cyproheptadine, and clopenthixol were found to promote sleep as predicted, benzatropine showed only a small increase in NREM sleep, whereas sertindole promoted wakefulness. To our knowledge, the sedative-hypnotic effects of alcaftadine and ecopipam have not been previously discussed in the literature. The method described extends previous single-target, single-mode-of-action models and is applicable across disease areas.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1554-8937